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Abstract- A formulation of shear deformation theory implemented numerically for the prediction
of vibratory characteristics of shallow conical shell panels is presented. The derivation of thickness
shear is assumed in a linear approximation. The Lame parameter for the transverse shear strain
component. which has previously been neglected. is considered. This consideration accounts for the
replacement of a term in transverse strain distribution through the shell thickness which results in
linear transverse shear strain distribution in contrast to the constant distribution hitherto known to
researchers in this field. The energy integral. which incorporates the shear deformation and rotary
inertia. is minimized to derive the governing eigen-matrix equation. A set of benchmark frequency
solutions is presented for two exemplary conical shells; the cantilever and the fully clamped shells.
Some selected mode shapes in terms of mid-surface contour plots and three-dimensional meshes are
also illustrated.

I. INTRODUCTlO!\

Conical shell panels have been used intensively in various engineering designs, particularly
in aerospace, structural and marine engineering disciplines. The applications range from
huge civil structures to small turbomachinery blades. To ensure a safe design, a detailed
understanding of the vibratory characteristics of these structures must first be determined.
In an effort to model the turbomachinery blades, the authors attempt to propose a first
order shear deformation theory together with an efficient pb-2 Ritz method to study the
vibratory characteristics of the moderately thick shallow conical shells.

Numerous research has been done on free vibration of turbomachinery blades (Rao,
1977, 1980; Leissa et al., 1982). Most of the works have been reviewed by Rao (1973),
Leissa (1981) and Chang (1981). However, almost all the analyses on vibration of conical
shells were based on Kirchhoff~Love'stheory (!rie et al., 1982. 1984; Teichmann, 1985;
Srinivasan and Krishnan, 1987; Cheung et al., 1989: Liew and Lim, 1994; Liew et al.,
1994,1995; Lim and Liew, 1995) which ignored the transverse shear strain and rotary
inertia. These analyses are, therefore, valid only for either a thin plate or a thin shell.
Moreover, most of the references provide us with only the results for conical frustums. The
free vibration of truncated conical shells of variable thickness using a transfer matrix
approach and an extensive set of natural frequency data for truncated conical shells of
uniform thickness under nine combinations of boundary conditions has been reported (Irie
etal., 1982, 1984).

Research on thin open conical shell panels. to the authors' knowledge, can only be
found in a few references. Teichmann (1985) presented approximate solutions of fun
damental frequencies and buckling loads of cylindrical and conical shell panels under initial
stress. Srinivasan and Krishnan (1987) solved the free vibration frequencies of fully clamped
conical shell panels based on Donnell's theory and using an integral equation approach.
The free vibration frequencies of these type of shell panels were also investigated by Cheung
et al. (1989) who employed a spline finite strip method.

Comparatively few publications are available for vibration of thick conical shells and
all of them deal with conical frustums. Takahashi et al. (1982. 1985, 1986) studied the free
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vibration of thick truncated conical shells with variable thickness using various methods
ranging from the Lagrangian approach, the classical stress-strain relations and the three
dimensional Hooke's law and a second-order shear deformation theory with components
of displacements assumed in quadratic expressions of thickness. Srinivasan and Hosur
(1989) solved the axisymmetric vibration of thick conical frustums of linearly varying
thickness clamped at both ends with the consideration of shear deformation and rotary
inertia. Sivadas and Ganesan (1992) analyzed the thick composite conical frustums using
a higher-order shell theory with three-noded isoparametric axisymmetric finite elements.
Furthermore, the accuracy of solutions using three different theories were compared: Love's
first approximation shell theory; an improved theory with shear deformation and rotary
inertia; and a shell theory with thickness normal strain and shear deformation.

None of the above references can be found for free vibration of shear deformable
conical shell panels despite the practical engineering importance of these structures. Conse
quently, it is the key objective of the present paper to develop a shear deformation theory
for free vibration analysis of moderately thick shallow conical shells.

An extremum energy approach based on the Ritz principle is applied here to examine
the vibratory characteristics of a class of moderately thick shallow conical shell panels.
These shear deformable shells have thickness less than 20% of their width in accordance
with first-order shear deformation theory (Mindlin, 1951). The Lame parameter for the
transverse shear strain component, which has previously been neglected (Reddy, 1984;
Kabir and Chaudhuri, 1991), is considered. This consideration accounts for the replacement
of a term in transverse shear strain distributions through the shell thickness which results
in linearly varying transverse shear strain distribution in contrast to the constant distri
bution. The actual transverse shear strain distribution is not a linear function but rather a
non-linear function of thickness. The assumption of linear shear strain distribution,
however, is compensated by introducing a shear correction factor for the resulting discrep
ancy.

In this analysis, the orthogonal displacement and rotation fields are approximated by
their respective global shape functions. These shape functions are extremely flexible in
accounting for various boundary conditions by fixing an appropriate power to the respective
basic functions which constitute the shape functions. A governing eigen-matrix equation
results. Comparatively little computational execution time and memory with respect to
other domain discretization numerical methods is required because the present global
method involves no mesh generation.

A set of comprehensive numerical dimensionless frequencies is presented. A con
vergence study is carried out to verify the downward convergence of eigenvalues. Com
parison of results for thin conical panels is shown by assigning a small thickness ratio and
the effects ofvarious geometric parameters on the resonance characteristics are discussed. In
addition, some selected vibration modes in mid-surface contour plots and three-dimensional
meshes are included to illustrate the vibratory nature of conical shell panels. Apparently,
no theoretical formulation for this type of moderately thick shell panels has been presented,
therefore the present solutions may be regarded as benchmark numerical data for either
design purposes or future reference.

2. STRAIl\ FIELDS AND EIGEN-MATRIX EQUATIOl\

Consider a homogeneous, isotropic, moderately thick shallow conical shell panel with
panel length a, reference width b,,, thickness h, cone length s, vertex angle B,. and base
subtended angle Bo' as illustrated in Fig. 1. The cone base can be assumed to be elliptical
with minor and major radii etoand Po since the shell panel is shallow. The radius ofcurvature
in the chordwise direction R\(x, y) is a parameter varying in the x- and y-directions. The
variation in the x-direction is linear. There is no curvature along the spanwise direction
(R, = co). The conical shell panels investigated here are the cantilever shell (CFFF) clamped
at x = 0 and the fully clamped shell (CCCC).
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Fig: 1 Geometry or the shallo\\ cOl11cal shell.

The geometry of a shallow conical shell with a trapezoidal planform is rather complex.
From Fig. 1, the reference major radius and the major and minor radii ::1. and f3 at any
vertical cross-section are

(la)

II,
/) = tan 2 (\ - .\) (l b)

bf3 tan (II" 2)
y. =

\ [4/f tan' (0" 2) -h']
(Ie)

where

(2a)

and

0, I( tan 2 0".2 )h,,=2ssin 1- -.

2 \j cos 2 0, 2 --r- tan211,,2
(2b)

The equation of an ellipse at any vertical cross-section is

I. (3)

Taking the first and second derivatives of::: with respect to r and making use of the definition
k = (dc:::drC

) [I + (d::: dr)2]' c, the curvature at a point can be expressed as
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(4)

and the chordwise radius of curvature is

(5)

The orthogonal displacement components can be represented by first-order shear
deformable functions of their corresponding displacements and rotations at the mid-surface
in terms of the transverse coordinate as follows:

l" = ('I +--~-- .. )'1'0 +z8';
, R,(x,y)

(6a)

(6b)

(6c)

where (u, 1". It') are the displacements of an arbitrary point along the X-, yo, z-directions and
(uo , 1'0. \I',,) are the displacements at the mid-surface. The present formulation assumes no
transverse extensibility. The rotations of a point are denoted by 8~ and 8';.

Using the above notations, the normal and shear strain fields are:

(7a)

and

I (h IV)I: = -- - + ----.-
I +.::R,(x. .I') C)' R,(x,y)

(C\I' ?11
'" = -:;- + -ex e.::

I i"u 01'
--+-

1+.::R.(r,y)i'y ox'

(7b)

(7c)

(7d)

(7e)

(7f)

where the Lame parameter 1[1 +.:: R,(x, v)] indicates the existence of shell curvature.
Substituting eqns (6a--e) into eqns (7a-f) yields a reduced strain field in functions of

the displacements and rotations of the mid-surface:

hI' I\"o NFl Z2 08'1
i:, = - +-_.- + ~--- - -

(I' R. ('\ . .1') - iJy R,(x,y) oy

L = 0

(8a)

(8b)

(8c)
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(8d)

(8e)

(8f)

Note that the neglect of the Lame parameter for the transverse shear strain in square
brackets in eqn (7d) by Reddy (1984) and Kabir and Chaudhuri (1991) results in the
replacement of the term v/ R, in their papers by the term in square brackets in eqn (8d)
here. Furthermore, these transverse shear strain components are affected by the presence
of shell curvature. In the xz plane where there is no curvature, the transverse shear strain
Ix: in eqn (8e) is a constant through the thickness similar to a flat plate. However, in the yz
plane, the shear strain ;',: is a linear function of thickness as given in eqn (8d) in contrast
to the constant distribution hitherto known to researchers in this field.

The strain and kinetic energies of a shallow conical shell are

(9)

and

(10)

where E is the Young's modulus, I' Poisson's ratio. 1\' = 5/6 is the shear correction factor,
V the volume and p the mass density per unit volume. No normal stress is assumed in the
above expressions.

From the assumption of small amplitude of free vibration, the translation and rotation
fields can be approximated by sinusoidal functions as:

(II)

Substituting eqns (8a~f) and (II) into eqns (9) and (10), the maximum strain and kinetic
energies in a vibratory cycle are. respectively.

Dff {12 [(eLi)' (ev \, 2W eV ( W )'
"lImax = 2 A h2 T/ +~~):") + R,(X.l~) )~." + R,(X~'J~)

n.To (e.vo .w,,) 1-. v (eva)'" eL.'.'u eVa I-v (aVo )2]+2v~ -+~- +-- .- +(I-v)---+-- --
ex ey R, (x. y) 2 cy ay (1x 2 ax

(
a0.""\)' . -, i'V cl0' (cl0."1 )' [f0" " fEY . 1 av CEY]+ __1 __.. _-__.. ~" ~ + _1 + 71' _.t. _..t _ 0 __1

ox R, (x.r) (".1' ("l' fl' - ex ay R, (x,y) ax ay
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00i 00\ (00\ )2]}+2--,- -- + - dxdv
oy ox ex .

(12)

(13)

where D = Eh 3 /12(1 - v2
) is the flexural rigidity and A the projected planform area of the

shell mid-surface.
For a generalized formulation independent of shell dimensions, a non-dimensional

coordinate system is applied,

x
¢ = ;

a
(14)

where a, hand h are the length, width and thickness of the shelL Using this non-dimensional
coordinate system, the displacement and rotation amplitude functions Uo(~, YJ), Vo(~, YJ),
Wo(~, YJ), 0'1 (~, YJ) and 0'1 (~, YJ) given in eq (11) can be represented by

m

Un(~' YJ) = L cj'¢~(~, YJ)
i= I

m

V,,(¢, YJ) = L c: ¢:(~, YJ)
i = I

m

Wo(~, YJ) = I c;'¢7(~, YJ)
i= 1

m

0'j(¢,YJ) = L c~'<1>~(¢,YJ)
[= I

m

0'1 (¢, YJ) = L c:<1>:(~, YJ)
i= 1

(l5a)

(15b)

(l5c)

(l5d)

(l5e)

in which c~,c:,c;',c~,c: are the unknown coefficients and ¢~,¢:,¢7,<1>~,<1>~ are the cor
responding shape functions.

The chordwise radius of curvature in the non-dimensional coordinate is

Based on the principle of extremum energy, the following energy functional

n = l1max -!Imax

is minimized with respect to the unknown coefficients

(16)

(17)
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and

( (

= 0: 'J. = lI.rand II" (18a)

('n
=0; x=lIandl

r'{'

which results in the governing eigel1\alue e4uation.

(K /'iVl) ~c: = :0:.

The stiffness matrix K. mass matnx \1 and the coetticient vector Care:

( 18b)

(19)

k"" k'" k'''' k"" k""

k" k [0] k'"

K -- k' k ,,, k" (20a)

k" " k" "

SYI1l k""

m"e< [0] [0] l0] [UJ
mi' [0] [0] mill

\1 = m"" [0] [0]

m' [0]

s\ m m
lill

and

The elements of the stiffness and mass matrices arc,

(20b)

(20e)

6(/ I 1

Ii

\,)
:I (I Iii I (2Ia)

12(/11\ 7 11)11
6(/h( I \ )

k + 1
Ii Ii

12(/h" \ i !lill,1I,' ,
II"/i

(21 b)

(2Ie)
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k"O" = a(l-v) a;0101
',I - -[3--' if 4>"<1J"

o ' ,

k',",' 12a2 a 101 6b
2

(1 - v) ,.-1010
1,1 = --.f "'-'"-' + ----- oJ "'-'4>'h2 ""'1') h2 '1', ,

k"II, = b(l-v) a;1010 (/2 ",0101

IJ 2[3 if 4>:<1>: - h[3 if 1/>:<1»
o . 0

6 ) ) (I) 6b' ) (I) 12 ' b)a- K- - V I) II) I - K- - V 10 loa" - ,0000
k"'''' = 5 "'''1>'' + ,f"-"4>" +--f "-""-"

II h2 '1',' , h2 '1'" h2 [3~ '1', '1',

kO,1I - V ,.-1001 + ~\' 4 0110
If" - oJ <I>~<I>j :2 J' <I>:'<1J:

kO,II, 6a2K2(I-v) 0000 a
2

0101 I-v 1010
1.1 = -----5<1>,<1>, + -.1<1>'<1>' + --.1<1>'<1>'

h2 "b 2 ' , 2 ' ,

(21d)

(21e)

(21f)

(21g)

(21h)

(21i)

(21j)

(21k)

(211)

(21m)

(2In)

",0000 + h
2

fOOOOm;JI = J'",-'",-' "'-'"-'
• '1';'1', 12[3~ ",,'I',

(22a,22b)

in which

h2
m,lI, - __ ",0000.

II - 12h[3" if ,,;:<I>j , Ill "" - ",0000
ii - <-f ¢~'<p;' (22c,22d)

(22e,22f)

(23a)

(23b)
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where rp, ;} = cP. <D; '1.. fJ = u. r. \1' ; i. j = 1. 2..... m. in which m is the total number of terms
employed in the shape functions and

. ~) fJt (';.17 =---~-
R, (.;. til

(24)

where fJo is the reference major radius and R, (~. til is the chordwise radius of curvature
given in eqns (la) and (16). respectively.

The governing eigenvalue eqn (19) can be solved readily by any standard numerical
eigensolver where the eigenvalue or equivalently the non-dimensional frequency parameter
is

where

a,,[12(1~\'C)] "
f. =--~h f .. (25a)

(25b)

is introduced because it is independent of the shell thickness h and thus enables the study
of effects of h on I.'.

:; METHOD OF SOU,'TION

The three translation and two rotation fields (Co' Vo' Woo 8'! and 8\) can be approxi
mated by respective global pb-2 shape functions which comprise the product of sets of
orthogonally generated two-dimensional polynomials (p-2) and corresponding basic func
tions (b). The boundary geometric expressions which are raised to a basic power in accord
ance with the boundary constraints constitute the respective basic functions for each degree
of freedom. Thus. the pb-2 shape functions satisfy the kinematic boundary conditions at
the outset.

Due to symmetry of geometry and boundary constraints. the vibration modes of a
shallow conical shell can be divided into two symmetry classes with respect to the xz-plane,
For a CFFF or a CCCC shell panel. the vibration modes can be divided into symmetric
(5) and antisymmetric (A) classes. Based on this criterion. the complete two-dimensional
polynomial functions can be sub-divided into odd and even functions in terms of powers
of ¢ and ry:

where

"
'\ t,(~·}ll = F](~,t/I·)~F·kI7,,)·

]

I' 'I

F] (~. I]J = L '\ ::;(/ 't]'
"--'

q~ Il 0.'::.4

I' 'I

F,(~. 1/,,) = "' L 't/'.L..
'/ ~ Il I __~ . .:;

(26)

(27a)

(27b)
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Table I. The IWO-UlIIll:lIslUlIal functions for the symmetry classes

Boundary Symmelr\
conditions (B.C.) cia" [ I'. ~V, E)': 8,

CFFF S F, F. F, F, F,
lor cccel \ F F, F. F, F,

where p is the highest degree of polynomial in the functions, The two-dimensional functions
of the translation and rotation fields for the symmetry classes are summarized in Table 1.

The ph-2 functions <p: (<p = ¢. cD and 7. = u. r. ll') for the respective degrees of freedom
can be generated using the following orthogonal recursive procedure:

where

4?;(~·ln =f(~·IIl<fJr- - I -=-:,<fJj.
, I

l~:f= II f,(~.ln<fJ;(fJjd~dll
•• I

.~: = II (PI')' d~dll
" ",' I

(P = (I). (D and :J. = u. r. 11'.

(28)

(29a)

(29b)

(29c)

The basic functions <fJt (<p = ¢. cD and "j = II, r. 11') are defined by the products of the
equations of continuous piecewise boundary geometries of the shell planform each raised
to an appropriate power that corresponds to the types of boundary constraints imposed on
the shell. For a CFFF conical shell. the basic functions are:

(30)

and for a ecce conical shell are:

(31a)

1 !

~ (1+'
4 \ h"

where ch" = 1- ([.\ is the chord ratio.

(31 b)
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Table 2, Convergence of frcl1l\l...'l1c: parameter I - ('J/) , II' FI lor a shallil\\' conical shell with \' = 0,3, 0, = 30
<Inti Ii - 1i1

\li1lk selJucllcc Ilumbel
--------

Syllll111:triL'lllude..; "" IltlSymmetric modes
B,C {IS "Ii IJ] S-I S-2 S-' S-4 \-1 A-2 A-3 A-4

CFFF 0,1 30 40 o 126X, 112hhl14 II 43'X:' 11.h46'!0 (I 11145 041622 0,58030 0,90359
50 o 126X I II 26:'X5 1143764 01>4632 o 11137 041593 0,58011 0,90252
60 o 126:<0 1l.~6~7'-) 1)4,' 75-' 064606 011 US 041578 0.58002 0.90204
70 0.12h7X (),~n~72 04."4:' 0.64'X6 o 11132 041571 0.57994 0.90154
XO o I2h 7X 112(,569 04-'738 064569 o 111-'2 041563 0.57992 0.90122

I' 40 0] :'h4X 1150246 069043 I Ihll 020673 0,76278 1.0684 1 111 '.-;.. .... _,

50 o 1.:'h47 0.5021 X 0.69027 I I:'l),! 020667 0.76241 1.0683 1.1220
60 0.1 'h4,' (J :'0209 069020 I 1:'1):' 020664 11.76226 1.0682 1.1219
70 11.1 '644 0:'0204 069111 ' I 1:'1), 020662 0.76218 10681 1.1219
XO o 1'644 (I 50202 0691112 I 1~91 020h61 11.7621.' 10681 1.1219

02 ,'II 40 O.045X99 021460 046745 0,:'04':' 0095-,6X 1J.29829 1J.39481 0.58724
50 0045XlJ4 02145:' 0,46737 11:'0411 OOlJ5-,3X 11.29806 0.39478 0.58669
611 O.045X90 021452 046n:, 11:'0401 O.1J95-'25 0,29797 1J.39474 058652
70 O.045X8S 021451 046734 1150."!J n.095-' 17 0.29795 0.39473 0.58640
SO O.045SS' !J21450 046733 0.:'0190 0095-' 1-' 0.29792 0.39472 05X6-,4

I:' 40 0.06-',1,1,; 0.1' 166 0.X3192 119111:' o IX294 oJ9459 0.56298 I.OX32
50 0.O6332~ 03-' 1611 O.X-' 170 0.91120 0.18291 IU9456 0.56282 10827
60 006-'3211 031156 O.X-' IhO 11.9110X 11.1 X2X9 IU9452 0.56275 1.0825
70 006-'31 X 1)1-'155 0.8-' I54 11.91103 o IX288 1)19450 0.56271 1.0823
80 006-'316 113-' 153 0.8-' 149 11.911110 O.182X7 !U9449 0.56268 1082-'

CCCC 0.1 -'0 40 0.64931 107114 11538 1.6262 0.73563 1.2503 1.7244 20018
50 0649311 IIJ70,' I 15-'6 1.6.2:'9 11.73557 12501 1.7240 200D
60 064929 10711:; ] 1516 I ,()~~h U.7)555 1.2501 1.7240 20010
70 064929 1.0702 I 15"~5 1.6254 07.1554 1.2500 17238 2.0009
XO 064929 1.0702 1 15,1' I ,62~,~ 07.1552 1.2500 1.7238 2.0007

]5 40 09146:; IX,19 212:' I .2,952 "' I ,1244 2.2-'97 3.1583 -'5622
50 09.145-' IX-, 14 2.1241 ~"l)5()1" I 3240 2.2-'X8 3.1564 3.5596
60 0.1)'447 IX,114 2.12.~x 2.9491 I J239 2.2-'86 3.1561 3.5580
70 0'),144 7 IX,II I 212 14 2,Q-l?-:2 I T2JX 2.2381 -'.1552 J.557R
80 0.1),1442 IX,III1 .2, 12.~2 2.947h I J2i i 2.2~79 3.1550 3.5565

02 .10 40 o 70342 O.870XX I 171'6 1.62<) I I 1136 1..1571 16940 2.145.1
50 0.70341 IIS70X I I 17;-..3 Ih2Xh 1 11,,4 1..1567 169.12 2.1440
60 070.140 liX70XO I 171'1 16~X ' I 11-'4 1.-'565 1.692X 2.14.17
70 0.70340 ll.X7076 I 1781 Ih~X~ I 11.1,1 1..1564 1.6927 2.1431
XO 0.7IB-'9 o X707:' I 17XO l.h~X I I 11.1~ 1..1562 1.6923 2.142X

15 40 1.0~05 1.:~6~n 1\)524 1956X 2.-'.168 2.X66X .1.5661
50 1.020-' I -'681 1.1)510 ,

'=~= I\)'5~ 2.-'-'47 2.X636 .1.5611-
60 111202 I .'680 1.9501 2 :2~1'f 1.9555 2.-'3-'8 2.8619 .1.5603
70 1.0201 I :,6'7'7 I\)50U ~.;2:; .; 1.9549 2J3J2 2.8613 .15577
SO 1.112111 1.16'6 1.')49, 2 ~~, I 1954":' 2.:1324 2.8597 3.5564

4 REStl 1';\:\1) DIS( \ SSIO:\

4.1. COllrergn!Ci! ([IIi! COllljil//'/\li1l I!W!iC.I

A convergence study is carried out to examine the numerical aspects of the present
formulation. The convergence of eigel1\alues for hath CFFF and CCCC conical shells is
shown in Table 2. Since it is impossible to undertake an all-encompassing survey of
the convergence of eigenvalues for nery case to be studied, only a few exemplary shell
configurations are taken here for each of the CFFF <md ecce shells. The length ratios ([s

investigated are 0.\ and 0.2 while the thickness ratio~ 11 if are I 30 (Izh" = 0.024 for ([/s = O. I
and hih" = 0.048 for ([ s = 0.2) and I 15 (Iz h, = (1.048 for if S = 0, I and Iz/ho = 0,096 for
([,s = 0.2). The eigenvalues are presented in two symmetry classes in accordance with eqns
(27a. b). The implication of the convergence is twofold: (I) the downward convergence of
eigenvalues is monotonic which implies the overestimation of structural stiffness and thus
vibration frequency by using the Ritz procedure: and (2) a total of 80 terms for each of the
S and A symmetry classes is required in order to achieve a satisfactory numerical con
vergence of eigenvalues. enless stated otherwise. all the suhsequent results are calculated
using nz = 80 terms.
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1able:; Companson of frequency parameter i. ~ "Jah",.: (ph D) for a thin shallow conical shell with v = 0.3,
a. h = 200. a s = 0.2. IJ, = 15 and e" = 30

Mode sequence number

BC Reference 4 6 7 8

eFFF Lim and LIew 6.1727 9070X 27.299 29.758 50.669 65.\7\ 74.499 80.201
(\995)

Present 6.0586 90\15 27.26\ 29.631 50.580 65.034 74.507 80.019

eccc Lim and Llew 22l.95 254.X4 28X.49 298.36 3\8.16 326.43 335.10 351.26
(1995)

Present 221.68 254.40 28787 297.89 317.71 325.59 334.64 350.81

Table 4. Comparison of frequency parameter i. = who'v (pE) for a moderately thick shallow conical Shallow with
\' = 0.3. ah = 20.0, a/s = 0.1 and e" = 30'

Mode sequence number
0.

BC (deg) Reference 5-1 5-2 5-3 5-4 A-I A-2 A-3 A-4

eFFF 30 Reddyt 013261 038007 0.56269 0.90006 0.15593 0.58894 0.85038 1.0175
Present 0.14120 038437 056362 0.90242 0.15876 0.59009 0.85576 1.0681

60 Reddyt 0.31461 0.48562 0.87535 1.128\ 0.28024 0.57408 1.1123 1.3281
Present 0.31631 0.48972 087896 1.1285 0.28245 0.57762 1.1130 1.3319

cece 30 Reddyt 078488 14572 1.6522 2.3199 1.0304 1.7608 2.4781 2.8286
Present 078652 1.4580 16572 2.3237 1.0348 1.7633 2.4838 2.8301

60 Reddyt 1.2239 \.4727 22842 27800 1.2753 1.8105 2.8645 2.9124
Present 1.2244 1.4749 22877 2.7801 1.2767 1.8134 2.8675 2.9137

tlndependcnt calculations using the strain tield of Reddy (1984) with shear correction factor 5;6.

A comparison study of vibration frequencies is provided in Table 3. The frequencies
for a thin conical shell were obtained by Lim and Liew (1995) based on the Kirchhoff
Love hypothesis. Excellent agreement of the results has been achieved, indicating that the
present formulation can simulate the vibration of a thin conical shell well by imposing a
relatively small thickness ratio (in this case Ilia = 1/200).

The effect of omitting the Lame parameter in the transverse shear distribution in eqn
(7d) is presented in Table 4. Reddy's first-order solutions in this table are obtained using
the displacement field in eqns (6a--e) but replacing the strain field by the expressions
presented by Reddy (1984) :

(32a)

(32b)

(32c)

cJw
i'c =~) +0':

ex

(32d)

(32e)

(32f)
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Table 5. Frequency parameter i.' = (IJb"" (pi E) for a CFFF shallow conical shell with v = 0.3 and On = 15

Mode sequence number

8, Symmetric modes Antisymmetric modes
(deg) G/S a,h Sol S-l S-3 S-4 A-I A-2 A-3 A-4

15 0.10 1000 0.0043469 0.018197 0.024155 0.026570 0.00296820.010505 0.022318 0.036697
60 00074905 0.043737 0.11768 0.22258 0.038510 0.11251 0.11688 0.21010
30 0.012898 0.077252 0.21193 0.40715 0.075059 0./1251 0.22702 0.40555

0.15 1000 0.0020430 0.010668 0.024349 003470 I 0.00261220.0080521 0.015094 0.024089
60 0.0042671 0.026781 0.073844 0.14302 0.038566 0.052488 0./1229 0.19389
30 0.0077375 0.049895 0.13813 0.26732 0.051820 0.074460 0.21459 0.26138

0.20 1000 0.0011977 0.0062014 0.015754 0.027852 0.00257460.0074537 0.013107 0.019738
60 0.0018644 0.019109 0.053444 0.10430 0.029815 0.039623 0.11126 0.15663
30 0.0030093 0.036452 0.10202 0.19805 0.029059 0.074434 0.15518 0.20965

30 0.10 1000 0.010646 0.020046 0.023298 0.039020 0.00650880.023268 0.033208 0.038939
60 0.022229 0.10924 0.20292 0.25688 0.043731 0.14359 0.29119 0.39085
30 0.031122 0.17091 0.39615 0.45081 0.085629 0.27870 0.39087 0.56000

0.15 1000 0.0084050 0.018150 0.021954 0.030269 0.0040810 0.015750 0.031955 0.047585
60 0.012176 0.065823 0.16838 0.30128 0.042285 0.12920 0.19815 0.24071
30 0.019043 0.10930 0.29355 0.55392 0.082841 0.19811 0.25186 0.46551

0.20 1000 0.0051395 0019843 0.027961 0.028394 0.00339540.011460 0.023756 0.038666
60 0.0082017 0.045586 0.12102 0.22827 0.042634 0.11836 0.12445 0.22210
30 0.013699 0.079715 0.21672 0.41551 0.082962 0.11835 0.24143 0.42810

45 0.10 1000 0.010853 0.030009 0.042479 0.050205 0.012844 0.025652 0.031335 0.053107
60 0.047913 0.14626 0.18908 0.30969 0.050401 0.18070 0.35255 0.40122
30 0.059196 0.26523 0.30911 0.57908 0.096384 0.34038 0.69307 0.75769

0.15 1000 0.011813 0.022094 0.027029 0.042043 0.00784980.025313 0.035655 0.041419
60 0.025665 0.11902 0.21427 0.27072 0.046416 0.14999 0.30288 0.41531
30 0.034365 0.18098 0.41718 0.46862 0.090600 0.29005 0.41534 0.58037

0.20 1000 0.011992 0.018505 0.023540 0.034696 0.00546580.020590 0.036837 0.048026
60 0.016618 0.083171 0.20325 0.29050 0.045739 0.13917 0.25941 0.26383
30 0.024003 0.13148 0.34561 0.56871 0.089550 0.25960 0.27081 0.50853

60 0.10 1000 0.015794 0.033599 0.041171 0.068286 0.015657 0.037126 0.043732 0.051316
60 0.083037 o 13869 0.25344 036240 0.061596 0.22992 0.27980 0.46631
30 0.10185 0.25205 0.40002 0.62415 0./0991 0.41801 0.54627 0.89861

0.15 1000 0.012197 0.031494 0.049348 0.051595 0.014289 0.027221 0.034074 0.054037
60 0.049080 0.16057 0.19575 0.31823 0.052119 0.17945 0.38228 0.41025
30 0.059013 (2637) 0.33972 0.59235 0.099309 0.33681 0.69160 0.72134

0.20 1000 0.013218 0.025341 0.033389 0.046345 0.010093 0.027831 0.038456 0.045349
60 0.031530 0.13524 0.22498 0.29169 0.049723 0.15840 0.31920 0.45129
30 0.039860 0.19757 043694 049539 0.096461 0.3<J416 0.45135 0.60750

in which R,(¢, 1]) is the variable curvature function. It is observed that the consideration of
Lame parameters for the transverse shear strains, which represent the presence of shell
curvature, has significant effect on the vibration frequencies of a moderately thick shallow
conical shell. The greatest discrepancy is about 6%, which corresponds to the S-l mode of
a CFFF shell with I), = 30 .

4.2. Numerical examples
A set of results is presented in Tables 5-8. The effects of various shell geometric

parameters, h/a, als, I), and 1)0' are examined. In order to study the influence of h/a on the
frequency, the non-dimensional frequency parameter Ashould be independent of thickness
h and length a. Therefore. the results are presented in terms of A' given in eqn (25b) instead
of A in eqn (25a). Tables 5 and 6 show),' for a CFFF conical shell with eo = 15° and 30°,
respectively. The corresponding results for a CCCC conical shell are shown in Tables 7 and
8. For all calculations, the Poisson's ratio v and shear correction factor used were 0.3 and
5/6, respectively.

It is well known that the first-order shear deformation theory provides relatively
accurate solutions so long as the thickness is less than 20% of the shortest dimension. It is
therefore necessary for the present calculation to be restricted by the above condition. The
thickness ratio h/a provided in the tables may not reflect this requirement since the shortest
dimension may either be the length of the panel a or the width boo The thickness to
width ratio hlbo can be determined using eqn (2b). The largest thickness ratio examined
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Table 6. Frcqucncy parameter i = o,h., If I l:) tor a CFFf- shallow conical shell with \' = 0.3 and eo = 30

Mode sequence number
-- -_ ..._-----

0, Symmctric modes Antisymmetric modes
(deg) Cl.' (/ Ii S-I S-~ S ' S-4 A-I A-~ A-3 A-4. -J

15 0.10 1000 0.01~1~~ (U)~XO~6 003X 164 0.050101 0010539 0.028871 0.035803 0.049184
30 0.040518 0~0333 040911 04X691 0.085821 0.27936 0,37464 0.55979
15 0.05814X (UI96" 077~56 0.X4271 0.16520 0.37444 0.52899 1,0353

0.15 1000 0.013449 0.0209"3 0.0~5~67 0.03X369 0.0058862 0.023883 0.041211 0.053056
30 0.0~1662 0.12~3~ (U1591 057558 0.08~354 O. J8897 0.25093 0.46282
15 (Ul33789 1J~037X 0.54061 0.73957 1J.15518 0.18939 0.47073 0.73485

o~o 1000 0.0089683 0.023466 (1.030~1J7 0.033994 0.0043458 0.016420 0.034729 0.052047
30 0.011356 0.084440 022668 042748 0.081611 0.11264 0.23990 0.42484
15 0,015525 o 14705 039762 056094 0.10761 0.15488 0.43694 0.49046

30 o 10 1000 0.019491 0.0395~x 0.04X030 0.077367 0.018541 0,044039 0,056396 0.058067
30 0.12678 O.~6569 043738 0.64569 0.11132 0.41563 0.57992 0,90122
15 015644 O.5020~ 069012 I 1591 0.20661 0.76213 1.0681 l.1219

0.15 1O00 0.014570 00371 ~~ 0.054330 0061353 0.017791 0.032210 0.040016 0.062062
30 0.070936 0290~9 IU6360 0.59829 0.098668 0.33072 0.61162 0.69717
15 (L091Xll OA4X67 0.68869 1.0873 0.18892 0.61071 0.62150 1.2838

1)20 1000 0.014929 0.030976 0.044074 0.053471 0.013208 0.031851 0.042697 0,052668
30 0.045887 021450 046733 0.50390 0.095313 0,29792 0.39472 0.58634
15 0063316 033153 083149 0.91100 0.18287 0.39449 0.56268 1.0823

45 0.10 100O 0.026924 005479~ 11.064636 0074757 0.027370 0.052176 0.063309 0,077234
30 0.19610 031079 O.6086~ 0.74717 o 15653 0.43219 0.61141 0.95184
15 0.27901 047550 I.O~66 1..'386 0.25910 0.83312 1.0920 L7740

o 15 1000 0.023980 II.04~591 0.054499 0.082275 0.022476 0.047853 0.061386 0.067900
30 o 14683 0.283 U 0,47177 0.68026 o 12085 0.43723 0.61552 0.92858
15 0.17669 0531 XO 0.73097 1.2049 0.22046 0.79383 1.1267 1.1874

O.~O 1000 0.019611 0.04194~ 0.055799 0.070926 0.022504 0.038749 0.049937 0.07045J
30 0.099586 0.32475 OJ9388 0.63784 o 11043 0.37073 0.76854 0,78504
15 012147 o529X3 068X57 I 1671 0.20847 0.68611 0.77004 1.4404

60 010 1000 0.037264 0067564 007403" 11.088649 0.037256 0.065149 0.079578 0.093368
30 023191 0453~~ 0.59646 1J.X2446 0.22750 040723 0.79457 0.91357
I" 0.38690 0.54627 I 1'59 1.4169 0.33949 0.75158 14253 1.7429

0.15 1000 0.031796 OJl5841) 0069367 I].0797~8 0.03~579 0.05367X 0.068773 0.089979
30 0.21155 0.325'1 061009 081743 0.16123 0,47720 0.60959 0.97270
15 0.28933 050776 099636 1.35~X 026378 0.91008 1.0808 1.7020

(l.~O 1000 0.030481 00413'77 O.Oh.'IX9 O.OX9052 IL028387 0.()5~613 0.068233 0,082967
30 0.17793 0303x I 115~O94 O.73~15 0.13443 046770 0.65098 0,96210
15 020947 05h.J.'j 1)79319 1.~607 0.23807 0.X358~ 1.~079 1.2500

corresponds to 0" = 30 ,0, = 15 , {/.\ = 0,20, !la = lil5 and lubo = 0.196 (a moderately
thick shell) in Tables 5 and 7 and the smallest corresponds to flo = 30 ,0, = 15, als = 0.10,
h/a = J, 1000 and h!bo = 0.00033 (a thin shell) in Tables 5 and 7. Thus, the present results
cover a wide range of shell configurations ranging from thin to moderately thick shallow
shells.

The etfect of shell thickness is olwioLls. An increase in hw (and an equivalent decline
in a:h) results in higher shell beading stiffness and a higher vibration frequency X. These
are the transverse dominant vibration modes. However, there are a few cases where A' is
insignificantly affected by an increase in lIa. For example. i.' = O. 11251 for the A-2 mode
with II" = 15 ,II, = 15 and a,s = 0.10 invariable when lIla increases from lj60 to 1/30 in
Table 5. Similarly, i.' for the A-2 mode with 0,., = 15 , 0, = 30 , a!s = 0.20 changes from
0.11836 to 0.11835 when 11a varies from I 60 to 1·30 in Table 5. This does not contradict
the statement above, where a thicker shell has higher bending stiffness, because these two
vibration modes are effectively in-plane dominant, as we shall see later in the contour and
three-dimensional vibration mode shapes.

The aspect ratio ajb" of the conical shell is characterized by a:s and bois. From eqn
(2b). it can be deduced that b"s is a constant for fixed values of f), and flo. When als
increases, the conical shell becomes longer for constant 0, and flO' We shall observe from
the mode shape figures tha t the S-l mode for a CFFF shell is generally a spanwise bending
mode which has a lower frequenc) (smaller X) if it is longer (increasing ajs). This fact is
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Table 7. Frequency parameter ;. = wh"v [I' E) for a ecce shallow conical shell with \' = 0.3 and 0" = 15

Mode sequence number

e, SVl1lmelric modes Alllisymmelric modes
(deg) a/s a/h S-I S-2 S-3 S-4 A-I A-2 A-3 A-4

15 0.10 1000 0.10681 0.11541 o 12682 0.14232 0.071195 0.095980 0.12279 0.14701
60 043895 047820 0.54211 064181 0.95563 1.0222 1.0972 1.2001
30 0.73618 081332 0.93996 1 1317 1.7138 1.8224 1.9452 2.1151

0.15 1000 0.15409 0.16404 0.17264 o 18065 0.096718 0.10945 0.12409 0.14119
60 0.58890 0.63409 067691 0.73058 1.3650 14522 1.5272 1.5977
30 0.99366 1.0690 1.1416 1.2.163 2.2.190 2.3639 24710 2.5730

0.20 1000 0.19272 0.20.130 021215 0.22006 0.12597 0.13909 0.15032 0.16099
60 0.73536 079262 084343 0.89150 1.7139 1.8183 1.9080 1.9902
30 1.1982 12843 lJ603 14326 2,5855 2.7206 28366 2.9421

30 0.10 1000 0.067456 0099371 o 13464 o 14054 0.076505 0.10350 011593 0.13191
60 0.33352 042011 0.58737 OK\457 0.52699 064671 0.83145 1.0838
30 0.49431 0.69614 1,0494 l.5372 1.0103 1.2213 1.5583 20213

0.15 1000 0.086993 0.1022\ 0.12393 o 14974 0.071317 010806 0.13597 0.15380
60 0.39470 0.44989 0.54576 0,6941.'\ 0.76420 0.85515 0.96630 1.1190
30 0.63145 0.74856 0.94823 1.2414 14241 l.5806 1.7713 2.0352

0.20 1000 0.11279 012639 0.13975 0,15550 (l.07728I OI04()) 0.13245 O.15S36
60 0.47012 0,52542 0.59122 0.68894 0.9lJ833 I 1063 12040 13101
30 0.78423 088781 1.0158 1.2041 1.7856 1.960lJ 21184 22909

45 0.10 1000 0.076327 0.10590 011606 O.IS352 0.073779 0.11502 0.12235 0.15037
60 0.33845 048971 06lJ350 0.76lJ90 040496 0.60895 0.91052 1.0768
30 0.47239 0.82781 13310 1.41.:'4 0.76299 1.1361 1.7143 2.0717

0.15 1000 0.071399 o 10725 o 14355 O.1447lJ 0.081636 0.10931 0.12386 o 14078
60 0.36038 044785 0.61639 0.86781 0.53969 066898 0.86015 1.1198
30 0.52009 0.72608 1.0869 l.5S72 1.0324 1.2592 1.6067 20829

0.20 1000 0.OS2915 0.10509 0.13474 o 166~2 0.078902 0,11663 0.14332 0.14629
60 040143 0.46741 0.58087 07560 I o7032.1 0.81583 0.95113 1.1339
30 0.61426 075790 0.99997 1,3505 13242 1.5208 1.7560 20768

60 0.\0 1000 0.084607 011730 o 13734 o 14668 0.085983 o 10878 0.13669 0.16091
60 0.38008 057170 060724 0.84286 1138728 0.67716 0.83465 1.0905
30 0.52810 1.0457 10830 1.6061 0.68962 1.2451 16223 2.0695

0.15 1000 0.081319 o llM< 0.124.'9 0.16528 0.079817 0.12162 0.13508 OlM48
60 0.37887 05088S 0.75588 (l.!1l12 044150 0.63380 091147 1.1963
30 0.50998 082247 13523 14702 0,83096 1.1728 1.6995 22859

0.20 1000 0.077156 o 11889 0.14619 o 15830 0.0876lJO 0.11760 0.13623 0.15400
60 0.40004 04895.1 0.66001 091758 O.5485lJ 0.69263 0.89455 1.1658
30 055473 o767V, 11401 1.6594 1.0453 1.2958 1.6613 2.1593

generally true in Tables 5 and 6. The effects of ilIon the other higher modes are more
complicated because they could be a mixture of chordwise and spanwise bending modes.

From the tables, it can be observed that i.' for the CCCC shell is higher than the CFFF
shell for a fixed shell configuration. The eccc shell has more boundary constraints which
render higher structural stiffness and thus a higher vibration freq uency.

A set of vibration modes in mid-surface contour and three-dimensional displacement
plots is presented in Figs 2 and 3 for the CFFF and eccc shells, respectively. The il/S

ratio varies from 0.1 to 0.2 while the thickness ratio h il is I 10 (hih" = 0.072 for il/S = 0.1
and h/bo = 0.145 for il/S = 0.2). It is observed that the 5-1 modes are the first spanwise
bending modes whereas the A-I modes are the tirst torsional modes for the CFFF shell in
Fig. 2. The frequency for the 5-1 mode decreases when the shell becomes longer as ilis steps
up from 0.1 to 0.2. The in-plane dominant vibration modes are the A-2 modes where
;" = 1.0641 and 0.39430 for the CFFF shell. For the vibration modes of the CCCC shell
as illustrated in Fig. 3, all the boundary surfaces arc undeformed because they are fully
clamped.

" CO'JCUSIO,\S

This paper studies the free vibration of moderately thick shallow conical shells. The
energy integrals incorporating the thickness-shear and rotary inertia effects are approxi
mated by a refined first-order shear deformation theory. The Lame parameter for the
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Tahlc X ~: rl'q UCIlCY pa ralneler I. = ,oJh., II' L') for a ecce shallow conical shell with l' = 0.3 and 80 = 30'

VI ode sequence number

(I Symmetric modes Antisymmetric modes
(degl (/ ;, Ii !J S-I S- ' S-3 5-4 A-I A-2 A-3 A-4

I" 0111 1111111 O.OXX404 OI.<7'\X o 15133 0.17783 0.094988 0.13069 0.16447 0.17701
<II O.M435 (l.X07'i1 1.1187 1.5692 1.0351 1.2530 1.5864 2.0352
I" 094~ 18 I.~X71 I.X719 2.6433 1.8293 2.1696 2.6984 3.3977

o I" 111011 0096115 0.125'i~ 0.16643 0.20683 0.10185 0.14095 0.16901 0.17227
<0 o 76503 (l.X6657 1.0394 1.3036 1.4493 1.6081 1.7996 2.0597

I" I 15XO 13444 16569 2.1030 2.3442 2.5681 2.8463 3.2245
o.~o 10011 0.121 "7 0.14033 O.IMOI o 19398 0.098061 0.14731 0.18289 0.21121

.10 O.'iO~11 10013 1.1158 1.2834 1.8099 1.9856 2.1432 2.3147

I" 13588 1'\IOX 16988 I. 9728 2.6872 2.9068 3.1091 3.3440
~O 11.111 11I011 01(U86 O.I3X'J~ o 1685X 0.1893X 0.10633 0.13373 0.16729 0.18130

.10 11.64929 1()70~ I 153'\ 16253 0.73552 1.2500 1. 7238 2.0007
1'\ 11'i344~ 1.S310 2.1232 2.9476 1.3237 2.2379 3.1550 3.5565

IJ.l " 10110 0.1014X 014001 o 14X86 0.20253 0.095719 0.15100 0.15637 0.19290
10 116'\26'\ 08'!619 13455 1.5749 0.88694 1.2118 1.6915 2.3279
15 0.92246 1450h DOOO 2.7837 1.6083 2.1404 2.9400 3.8683

II.~I) 11100 0.094945 0.146'\6 0.16518 0.19022 0.10273 0.14081 0.17674 0.18923
<II 07033'1 OX707 " I 17XO 1.6281 1.1132 1.3562 1.6923 2.1428
15 1.0201 1.3h7h 19493 2.7231 1.9547 2.3324 2.8597 3.5564

4" 0.111 1000 o 12581 0.14916 iJ 17764 0.2097X 0.12698 0.14489 0.19028 0.21097
10 077lhl 1.0014 14777 1.7772 0.78794 1.3401 1.5849 2.1179

1" I 1720 IX354 26~56 3.2742 1.3656 2.5208 2.8678 3.8995
II I" 111110 011159 0.1459.' 0.1802X 0.20314 0.11347 0.14398 0.17978 0.18904

10 07(19) 11~3.1 1.1 '137 1.6782 0.76675 1.2981 1.7702 2.0637
I" OlJX676 I.X9).1 2.1 X58 3034lJ 1.3669 2.3081 3.2372 3.6564

020 11100 o IOX60 iJ.15470 0.16508 020225 0.10572 0.15180 0.16800 0.20986
10 070449 0.'1'1108 14868 1.5146 0.86353 1.2551 1.8175 2.2708

I' 0'!704'i U'!7'i 25921 26647 1.5629 2.2144 3.1688 3.9234
60 11.111 1000 0.15412 0.17408 0.2092'1 0.26886 0.15563 0.17489 0.21531 0.27330

10 0.95121 1.0570 1.5682 1.9635 0.94563 1.2560 1.9656 2.0391
I." 1.5050 I.XlJ5~ 2.9702 35513 1.6127 2.3512 3.6957 3.7485

o. I" 11100 o 1.1270 0.15X96 o 19124 0.21945 0.13349 0.15496 0.20659 0.22018
~ (j IlX141~ J()66') IA.<X I 1.7790 0.81142 1.4481 1.5535 2.1593

I." I 1734 1.'1327 24X30 .12374 1.3822 2.6874 2.7867 3.9492
11.211 10110 1112.1111 0.15515 o 1972X 021804 0.12348 0.15871 0.19791 0.20042

.<0 (J.78069 1.1992 1.2416 1.7402 0.80699 1.3647 1.8060 2.1509

I" 10644 1.990 I 2.2435 3.1334 1.4149 2.3993 3.3017 3.7926

transverse shear strain component is considered. which results in the replacement of a term
in transverse shear strains which varies linearly through the shell thickness in contrast to
existing constant distributions. The energy functional is minimized in accordance with
the Ritz extremum energy procedure. A computational efficient numerical method with
orthogonally generated global shape functions has been developed which requires no
domain discretization or mesh generation. The flexibility of the method in accounting
for various boundary conditions is demonstrated through two numerical examples: the
cantilever and the fully clamped conical shells.

A convergence study has been presented to show the downward convergence of eig
envalues and to determine the number of terms required for satisfactory convergent results.
The solutions have been compared with thin conical shell solutions by assigning a small
thickness ratio to the presented formulation. Excellent agreement has been obtained. The
effects of the missing Lame parameter for the transverse shear strain have been shown to
influence the vibration frequencies significantly. A set of benchmark frequency parameters
has been presented for a wide class of shell configurations for both cantilever and fully
clamped shells. It has been found that an increase in thickness results in a higher frequency
for a transverse dominant bending mode. For the cantilever shell, a decline in frequency
for the first spanwise bending mode was observed when the shell became longer. These
facts have been reflected through some selected three-dimensional displacement vibration
modes shapes.
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a
Mode Shapes

s 5-1 5-2 5-3 5-4 A-I A-2 A-3 A-4

0.1

1.61361.09011.6325 0.30049 1.0641
-~-~,-----~--,-'-----C-"---------------J

0.942210.727660.19123

0.2

/).(~ ~,~f!J),~

~ -.,~~
: 0.084159 0.45335 1.1369 1.1436 0.26291 0.39430 0.79539 1.2459

Fig. 2. Mid-surface contpur and three-dimensional vihration mode shapes of a CFFF shallow
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